Close Menu
Chyno Miranda.com
    Facebook X (Twitter) Instagram
    Chyno Miranda.com
    • Home
    • News
    • Business
    • Technology
    • Digital Marketing
    • Travel
    • Lifestyle
    • Entertainment
    • Fashion
    Chyno Miranda.com
    Home»Others»Para Que a Função Y= (3m-9).x2 -7x +6 Seja Quadrática, O Parâmetro M Deve Ser:
    Others

    Para Que a Função Y= (3m-9).x2 -7x +6 Seja Quadrática, O Parâmetro M Deve Ser:

    ChristopherBy ChristopherApril 21, 2023Updated:May 2, 2023No Comments3 Mins Read
    Para Que a Função Y= (3m-9).x2 -7x +6 Seja Quadrática, O Parâmetro M Deve Ser:

    The equation y = (3m-9).x2 -7x +6 is a quadratic equation if the parameter m is defined correctly. This article will explain what the value of the parameter m should be to make the equation quadratic.

    Para Que a Função Y seja Quadrática

    A equação y = (3m-9).x2 -7x +6 é uma equação quadrática se o parâmetro m for definido corretamente. Esta equação é definida como y = ax2 + bx + c, onde a é o coeficiente da equação, b é o segundo termo e c é o termo independente. Neste caso, a = (3m-9), b = -7 e c= 6.

    Para que a equação seja quadrática, o coeficiente a deve ser não nulo e positivo. Ou seja, o parâmetro m deve ser definido de modo que (3m-9) seja maior que 0.

    Valor do Parâmetro M

    Para que a equação y = (3m-9).x2 -7x +6 seja quadrática, o parâmetro m deve ser maior que três. Mais precisamente, o parâmetro m deve ser maior que 3 para que (3m-9) seja maior que 0.

    Por exemplo, se o parâmetro m é igual a 4, então (3m-9) = 9, o que é maior que 0. Se o parâmetro m é igual a 2, então (3m-9) = -3, o que é menor que 0.

    In summary, to make the equation y = (3m-9).x2 -7x +6 quadratic, the parameter m must be greater than 3. This ensures that (3m-9) is positive and non-zero, which is a necessary condition for a quadratic equation.

    When dealing with a quadratic equation, such as the equation y= (3m-9)*x2 -7x +6, it is important to understand the role of the parameter m in order to find the right answer. To make this function quadratic, the parameter m must meet certain criteria.

    The parameter m is a coefficient of the second degree term, which contains the variable x2. Therefore, for the equation to be quadratic, m must be greater than zero. Furthermore, m should not be equal to three. If m is equal to three, then the coefficient of the x2 term will be zero, meaning that the second degree term is eliminated and the equation becomes linear, rather than quadratic.

    It is important to note that the value of m is arbitrary and only affects the shape of the graph associated with this equation. For example, if m is close to zero, the graph will be relatively flat, whereas if m increases, the graph is steeper.

    In order for the equation y= (3m-9)*x2 -7x +6 to be quadratic, the parameter m must be greater than zero and not equal to three. Knowing this information will help students better understand the rationale behind this particular equation and its associated graph.

    Christopher
    • Website

    Related Posts

    Worlds Collide: Adventures in the Online Gaming Multiverse

    December 26, 2023

    Healthy Home Cooking: Easy and Nutritious Meal Ideas for Busy Lives

    December 1, 2023

    Transforming Legal Frameworks

    November 20, 2023
    recent post

    IT Downtime Minimization: Best practices to minimize client downtime during maintenance.

    January 7, 2025

    Exploring the Advantages of a 200W Curved Solar Panel: Efficient and Flexible Solar Power Solutions

    October 16, 2024

    Polaris General Accessories: Enhancing Versatility, Performance, and Comfort

    October 16, 2024

    Revolutionizing Home Energy: The Advancements of LFP Battery Powered Generators

    August 30, 2024
    Categories
    • Automotive
    • Beauty Tips
    • Business
    • Celebrity
    • Digital Marketing
    • Education
    • Entertainment
    • Environment
    • Exercise
    • Fashion
    • Featured
    • Finance
    • Fitness
    • Food
    • Health
    • Home Improvement
    • Instagram
    • Law
    • Lawyer
    • Lifestyle
    • News
    • Pet
    • Photography
    • Product
    • Real Estate
    • Religion
    • Social Media
    • Sports
    • Style
    • Technology
    • Travel
    • website
    • Contact Us
    • Privacy Policy
    Chynomiranda.org © 2025, All Rights Reserved

    Type above and press Enter to search. Press Esc to cancel.